Solving Large-scale Quadratic Eigenvalue Problems with Hamiltonian Eigenstructure Using a Structure-preserving Krylov Subspace Method

نویسندگان

  • PETER BENNER
  • HEIKE FAßBENDER
  • MARTIN STOLL
چکیده

We consider the numerical solution of quadratic eigenproblems with spectra that exhibit Hamiltonian symmetry. We propose to solve such problems by applying a Krylov-Schur-type method based on the symplectic Lanczos process to a structured linearization of the quadratic matrix polynomial. In order to compute interior eigenvalues, we discuss several shift-and-invert operators with Hamiltonian structure. Our approach is tested for several examples from structural analysis and gyroscopic systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Restarted Generalized Second-Order Krylov Subspace Methods for Solving Quadratic Eigenvalue Problems

This article is devoted to the numerical solution of large-scale quadratic eigenvalue problems. Such problems arise in a wide variety of applications, such as the dynamic analysis of structural mechanical systems, acoustic systems, fluid mechanics, and signal processing. We first introduce a generalized second-order Krylov subspace based on a pair of square matrices and two initial vectors and ...

متن کامل

A rational SHIRA method for the Hamiltonian eigenvalue problem

The complete list of CSC and SFB393 preprints is available via Abstract The SHIRA method of Mehrmann and Watkins belongs among the structure preserving Krylov subspace methods for solving skew-Hamiltonian eigenvalue problems. It can also be applied to Hamilto-nian eigenproblems by considering a suitable transformation. Structure-induced shift-and-invert techniques are employed to steer the algo...

متن کامل

Numerical Solution of Quadratic Eigenvalue Problems with Structure-Preserving Methods

Numerical methods for the solution of large scale structured quadratic eigenvalue problems are discussed. We describe a new extraction procedure for the computation of eigenvectors and invariant subspaces of skew-Hamiltonian/Hamiltonian pencils using the recently proposed skew-Hamiltonian isotropic implicitly restarted Arnoldi method (SHIRA). As an application we discuss damped gyroscopic syste...

متن کامل

Ifeast

The FEAST eigenvalue algorithm is a subspace iteration algorithm that uses contour integration in the complex plane to obtain the eigenvectors of a matrix for the eigenvalues that are located in any user-defined search interval. By computing small numbers of eigenvalues in specific regions of the complex plane, FEAST is able to naturally parallelize the solution of eigenvalue problems by solvin...

متن کامل

Compact Rational Krylov Methods for Nonlinear Eigenvalue Problems

We propose a new uniform framework of Compact Rational Krylov (CORK) methods for solving large-scale nonlinear eigenvalue problems: A(λ)x = 0. For many years, linearizations are used for solving polynomial and rational eigenvalue problems. On the other hand, for the general nonlinear case, A(λ) can first be approximated by a (rational) matrix polynomial and then a convenient linearization is us...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008